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The symplectic structure of quantum commutators is first unveiled and then exploited to describe general-
ized non-Hamiltonian brackets in quantum mechanics. It is easily recognized that quantum-classical systems
are described by a particular realization of such a bracket. In light of previous work, this paper explains a
unified approach to classical and quantum-classical non-Hamiltonian dynamics. In order to illustrate the use of
non-Hamiltonian commutators, it is shown how to define thermodynamic constraints in quantum-classical
systems. In particular, quantum-classical Nosé-Hoover equations of motion and the associated stationary den-
sity matrix are derived. The non-Hamiltonian commutators for both Nosé-Hoover chains and Nosé-Andersen
�constant-pressure, constant-temperature� dynamics are also given. Perspectives of the formalism are
discussed.
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I. INTRODUCTION

In order to describe phenomena in the real world, classical
and quantum systems are represented by means of Hamil-
tonian mathematical theories �1–4�. However, when studying
systems with many degrees of freedom, the need to perform
numerical calculations on computers has led to the develop-
ment of non-Hamiltonian mathematical structures �5–7�.

In the classical case, non-Hamiltonian formalisms are
typically employed to implement thermodynamic constraints
�8� using just few additional degrees of freedom �whereas by
using Hamiltonian theories one should resort to an infinite
number of degrees of freedom�. Just recently, it has been
shown that the non-Hamiltonian dynamics of classical sys-
tems can be formulated in a unified way by means of gener-
alized brackets which ensure energy conservation �9,10� and
subsumes Dirac’s formalism �3� for systems with holonomic
constraints �11�. Other approaches to classical non-
Hamiltonian brackets can be found in Refs. �12,13�.

In the quantum case, the impossibility to solve on com-
puters full quantum dynamics for interacting many-body sys-
tems has led to the development of quantum-classical theo-
ries. Indeed, a generalized bracket to treat quantum-classical
systems has been proposed by various authors �14�.

Since in the classical case non-Hamiltonian brackets are
obtained by modifying the symplectic structure of the Pois-
son bracket �9,10�, in order to deal with the quantum case
one could first make apparent the symplectic structure of the
commutator �which is the Hamiltonian bracket of quantum
mechanics� and then generalize it in order to obtain a non-
Hamiltonian quantum bracket �commutator�. In this paper it
is shown that this is indeed possible. The non-Hamiltonian
commutator, which is obtained by this procedure, is then
used to reformulate quantum-classical brackets �14�. Thus, it
is stressed that quantum-classical dynamics can be regarded
as a form of non-Hamiltonian quantum mechanics because

the quantum-classical bracket does not satisfy the Jacobi re-
lation and, as a consequence, the time-translation invariance
of the algebra is violated. In order to illustrate the use of
non-Hamiltonian commutators, it is shown how to define
thermodynamic constraints in quantum-classical systems.
The particular case of the Nosé-Hover thermostat �6,7� is
treated in full details and the associated stationary density
matrix is derived. The more general cases of Nosé-Hover
chains �15� and constant pressure and temperature �5,6,8�
bring no major difference either conceptually or technically
and are treated in less detail. It is worth noting that some past
attempts of introducing Nosé-Hover dynamics in quantum
calculations �16,17� used a simpler form of quantum-
classical dynamics which did not treat correctly the quantum
back-reaction on the classical variables. The possibility of
applying thermodynamic constraints to quantum-classical
dynamics is a technical advance that could lead to further
theoretical and computational achievements with regards to
the study of open quantum systems �18,19�. With respect to
this, a nontrivial major obstacle is the development of effi-
cient algorithms to simulate longtime quantum dynamics.

Besides the technical applications of non-Hamiltonian
commutators to the particular case of quantum-classical dy-
namics, one could appreciate on a more conceptual level
that, in light of previous work, non-Hamiltonian brackets
provide a unified approach to non-Hamiltonian dynamics
both in the classical and quantum case. In addition, if one is
willing to indulge in speculations, it is worth noting that the
mathematical structure presented in this paper may be shown
to generalize the formalisms that a number of authors have
already presented in the literature �20–24�. In particular it is
worth mentioning that non-Hamiltonian commutators could
be used, in principle, in order to introduce nonlinear effects
in quantum mechanics along the lines already proposed by
Weinberg �22�. Therefore, one could foresee interesting ap-
plications of non-Hamiltonian commutators in various fields.

The paper is organized as follows: In Sec. II the symplec-
tic structure of Hamiltonian quantum mechanics is unveiled
and its generalization by means of the non-Hamiltonian com-
mutator is proposed. In Sec. III it is shown that the quantum-*Email address: asergi@unime.it
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classical bracket can be written in matrix form as a non-
Hamiltonian commutator. Such a form easily illustrates the
failure of the Jacobi relation �25�. In Sec. IV non-
Hamiltonian commutators for quantum-classical systems are
used in order to introduce, following Refs. �9,10�, Nosé ther-
mostatted dynamics on the classical degrees of freedom.
Nosé-Hoover chains and constant-pressure, constant-
temperature �NPT� equations of motion bring no major dif-
ference and are treated in less detail in the Appendix. In Sec.
V it is proven that the stationary density matrix under the
quantum-classical Nosé-Hoover equation of motion exists
and its explicit form is given up to order �. Conclusions and
perspectives are given in the final section.

II. NON-HAMILTONIAN QUANTUM MECHANICS

It is well known that classical and quantum dynamics
share an analogous algebraic structure �3,4� realized by
means of specific brackets: Poisson brackets in the classical
case and commutators in the quantum one. It is also known
that Poisson brackets have a symplectic structure that is eas-
ily represented in matrix form �1,2�. If one denotes the point
in phase space as X= �R , P�, where R and P are the usual
coordinates and momenta respectively, by defining the anti-
symmetric matrix

B = � 0 1

− 1 0
� �1�

and the Poisson bracket of any two phase space function
a�X� and b�X� can be written in matrix form as

�a,b� = 	
i,j=1

2N
�a

�Xi
Bij

�b

�Xj
, �2�

where 2N is phase space dimension. In Refs. �9–11�, Eq. �2�
has been generalized introducing an antisymmetric tensor
field Bij�X�=−B ji�X� so that a general bracket �. . . , . . . �X,
having the same matrix structure of that in Eq. �2�, could be
introduced and non-Hamiltonian equations of motion could
be written as

Ẋi = �Xi,H�X = 	
j=1

2N

Bij�X�
�H
�Xj

, �3�

where H is the “Hamiltonian” or generalized energy.
As one could expect, the commutator can also be written

in matrix form using the symplectic structure of Eq. �1�. If
one considers a set of quantum variables �̂�, �=1, . . . ,n,
which can be canonical, noncanonical, or anticommuting
variables, the commutator ��̂� , �̂��= �̂��̂�− �̂��̂� �� ,�
=1, . . . ,n� can be expressed as

��̂�,�̂�� = ��̂� �̂�� · � 0 1

− 1 0
� · ��̂�

�̂�
� . �4�

The above matrix form of the commutator permits one to
appreciate the common symplectic structure of both classical
and quantum mechanics.

Given the Hamiltonian operator Ĥ of the system, the law
of motion in the Heisenberg picture can also be written in
matrix form as

d�̂�

dt
=

i

�
�Ĥ �̂�� · B · � Ĥ

�̂�

� = iL̂�̂�, �5�

where the Liouville operator has been introduced,

iL̂ =
i

�
�Ĥ . . . � · B · � Ĥ

. . .
� . �6�

The algebra of commutators is a Lie algebra. This means
in particular that the commutator satisfies the following
properties:

��̂�,�̂�� = − ��̂�,�̂�� , �7�

��̂��̂�,�̂�� = �̂���̂�,�̂�� + ��̂�,�̂���̂�, �8�

�c,�̂�� = 0, �9�

where c is a so called c number and � ,� ,�=1, . . . ,n. Be-
sides properties in Eqs. �7�–�9�, in order to have a Lie alge-
bra, it is necessary that the so-called Jacobi identity holds

J = †�̂�,��̂�,�̂��‡ + †�̂�,��̂�,�̂��‡ + †�̂�,��̂�,�̂��‡ = 0.

�10�

The Jacobi identity ensures that the algebra is invariant under
the law of motion and as such it states an integrability con-
dition. In the above formalism it can be appreciated that the
antisymmetry of the commutator �7� arises from the antisym-

metry of the symplectic matrix B and ensures that if Ĥ is not
explicitly time dependent then it is a constant of motion

d

dt
Ĥ = iL̂Ĥ = 0. �11�

The conservation of energy under time translation defined by
means of antisymmetric brackets is another nice property
shared both by the algebra of Poisson brackets on classical
phase space and by the algebra of commutators of quantum
variables.

Using the operator language of Eq. �4�, one can define a
generalized commutator as

��̂�,�̂�� = ��̂� �̂�� · D · ��̂�

�̂�
� , �12�

where D is an antisymmetric matrix operator of the form

D = � 0 �̂

− �̂ 0
� , �13�

with �̂ arbitrary operator or c number. Generalized equations
of motion could then be defined as
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d�̂�

dt
=

i

�
�Ĥ �̂�� · D · � Ĥ

�̂�

� = iL̂�̂�. �14�

It must be stressed that the non-Hamiltonian commutator de-
fined in Eq. �12� could violate the Jacobi relation �10� so that
in general it does not define a Lie algebra. The non-
Hamiltonian commutator of Eq. �12� defines, of course, a
generalized form of quantum mechanics. However, in this

generalized theory the Hamiltonian operator Ĥ is still a con-
stant of motion because of the antisymmetry of D. It is
interesting to note that D could in principle depend from the
quantum variables �̂�. Then Eq. �14� can be thought of as a
generalization to the Heisenberg picture of the mathematical
formalism proposed by Weinberg �22� in order to introduce
nonlinear effects in quantum mechanics.

In the next section it will be shown that the non-
Hamiltonian commutator defined in Eq. �12� and the non-
Hamiltonian equations of motion �14� provide the math-
ematical structure for quantum-classical evolution �14�.

III. NON-HAMILTONIAN COMMUTATORS IN
QUANTUM-CLASSICAL MECHANICS

Quantum-classical systems can be treated by means of an
algebraic approach. This has been already proposed by a
number of authors �14� by means of a quantum-classical
bracket which does not satisfy the Jacobi relation. A
quantum-classical system is composed of both quantum �̂
and classical X degrees of freedom. The quantum variables
depends from the classical point X so that an abstract space is
defined in such a way that a Hilbert space �where quantum
dynamics takes place� is attached to each phase space point.
In turn, a displacement of the phase space point determines a
consistent effect on quantum evolution in the Hilbert space.
The energy of the system is defined in terms of a quantum-

classical Hamiltonian operator Ĥ= Ĥ�X� coupling quantum

and classical variables E=Tr�
dXĤ�X�. It has been shown
�14� that the dynamical evolution of a quantum-classical op-
erator �̂�X� is given by

�t�̂�X� =
i

�
�Ĥ,�̂�X�� −

1

2
�Ĥ,�̂�X�� +

1

2
��̂�X�,Ĥ� = „Ĥ,�̂�X�… .

�15�

The last equality defines the quantum-classical bracket in
terms of the commutator and the symmetrized sum of Pois-
son brackets.

Exploiting what has been done in Refs. �9,10� for the
Poisson bracket and in the previous section for the commu-
tator, the quantum-classical bracket can be easily recasted in
matrix form as a non-Hamiltonian commutator. To this end,
one can introduce the operator � defined in such a way that
applying its negative on any pair of quantum-classical opera-
tor functions �̂��X� and �̂��X�, their Poisson bracket is
obtained

��̂�,�̂�� = − �̂��X���̂��X� = 	
i,j=1

2N
��̂�

�Xi
Bij

��̂�

�Xj
. �16�

The quantum-classical law of motion can be rewritten as

�t�̂� =
i

�
�Ĥ �̂�� · B · � Ĥ

�̂�

� + �Ĥ �̂�� · � 0
�

2

−
�

2
0 � · � Ĥ

�̂�

� .

�17�

A more compact form is readily found by defining the anti-
symmetric matrix superoperator

D = � 0 1 +
��

2i

− 1 +
��

2i
� 0 � . �18�

Using the matrix superoperator in Eq. �18� the quantum-
classical law of motion becomes

�t�̂� =
i

�
�Ĥ �̂�� · D · � Ĥ

�̂�

� = �Ĥ,�̂�� = iL�̂�, �19�

where the last equality introduces the quantum-classical
Liouville operator in terms of the quantum-classical bracket.
The structure of Eq. �19� is that of the non-Hamiltonian com-
mutator given in Eq. �14� and as such generalizes the stan-
dard quantum laws of motion of Eq. �5�. It is clear from its
definition in Eq. �18� that the antisymmetric matrix superop-
erator D does not have as simple a symplectic structure as
B. It contains the operator � defined in Eq. �16� which, in
this case, has a symplectic structure. As such, D introduces
a mathematical structure that characterizes the time evolution
of quantum-classical systems.

The Jacobi relation in quantum-classical dynamics is

J = „�̂�,��̂�,�̂��… + „�̂�,��̂�,�̂��… + „�̂�,��̂�,�̂��… . �20�

Using the matrix formalism introduced, it is simple to calcu-
late J explicitly and to this aim one can consider the first
term on the right-hand side of Eq. �20�. The other two terms
on the right-hand side of Eq. �20� can then be easily calcu-
lated by considering the even permutations of �̂� , �̂� , �̂� in
the formula obtained for (�̂� , ��̂� , �̂��). Finally, collecting the
terms together, one gets

J =
1

4
��̂����̂���̂�� − �̂����̂���̂�� − ��̂���̂����̂�

+ ��̂���̂����̂� + �̂����̂���̂�� − �̂����̂���̂��

− ��̂���̂����̂� + ��̂���̂����̂� + �̂����̂���̂��

− �̂����̂���̂�� − ��̂���̂����̂� + ��̂���̂����̂�� .

�21�

In order to easily get such expression, the relation
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i,j=1

2N
��̂�

�Xi
Bij� j��̂��̂�� = 	

i,j=1

2N
��̂�

�Xi
Bij�� j�̂���̂� +

��̂�

�Xi
Bij�̂��� j�̂��

�22�

was exploited. Thus it is found that the Jacobi relation does
not hold globally for all points X of phase space �J�0�.

IV. NOSÉ DYNAMICS IN QUANTUM-CLASSICAL
SYSTEMS

The antisymmetric matrix B enters through � in the defi-
nition of D. Following the work of Refs. �9,10� thermody-
namic constraints can be imposed on the classical bath de-
grees of freedom in quantum-classical dynamics just by
modifying the matrix B. For clarity it will be explicitly
shown how to generalize the derivation of quantum-classical
equations of motion in the case of Nosé constant-temperature
dynamics �6�. In the Nosé case the bath degrees of freedom
will be

X � �R,	,P,p	� , �23�

where 	 and p	 are the Nosé coordinate and momentum. The
following quantum-classical Hamiltonian is assumed:

ĤN = K̂ +
P2

2M
+

p	
2

2m	

+ 
̂��̂,R� + gkBT	 , �24�

where K̂ is the quantum kinetic operator, 
̂ is the potential
operator coupling classical and quantum variables, M is the
mass of the classical degrees of freedom, m	 is the Nosé
inertial parameter, and g is a numerical constant whose value
�as it will be shown� must be set equal to the number N of
classical momenta P if one wants to obtain a sampling of the
R , P coordinates in the canonical ensemble. Then the matrix
BN is

BN = �
0 0 1 0

0 0 0 1

− 1 0 0 − P

0 − 1 P 0
� . �25�

Using BN, the operator �N and the classical phase space
non-Hamiltonian bracket on two generic variables A1 and A2
can be defined,

A1�NA2 = − 	
i,j=1

2N
�A1

�Xi
Bij

N�A2

�Xj
. �26�

The explicit form of the matrix operator that defines through
Eq. �19� the quantum-classical bracket and the law of motion
is then given by

DN = � 0 1 +
�

2i
�N

− 1 +
�

2i
�N� 0 � . �27�

The quantum-classical Nosé-Liouville operator is given
by

d

dt
�̂ = iLN� =

i

�
�ĤN �� · DN · �ĤN

�̂
� . �28�

One is then led to consider, in the right-hand side of �28�, the
term given by

− ĤN�N�̂ + �̂�NĤN =
�
̂

�R

��̂

�P
+

��̂

�P

�
̂

�R
− 2F	

��̂

�p	

− 2
P

M

��̂

�R

− 2
p	

m	

��̂

�	
+ 2

p	

m	

P
��̂

�P
, �29�

where F	= �P2 /M�−gkBT. Finally, using the above result,
the equation of motions for the dynamical variables are
given by

d

dt
� =

i

�
�H�̂ − �̂H� −

1

2
 ��̂

�P

�


�R
+

�


�R

��̂

�P
� +

P

M

��̂

�R
+

p	

m	

��̂

�	

−
p	

m	

P
��̂

�P
+ F	

��̂

�p	

. �30�

Representation in the adiabatic basis

One can express the quantum-classical equations of mo-
tion in the adiabatic states. Nosé quantum-classical Hamil-
tonian can be rewritten as

ĤN = ĥ�R� +
P2

2M
+

p	
2

2m	

+ gkBT	 , �31�

where it has been introduced the operator ĥ�R�= K̂

+
̂��̂ ,R�. Then the adiabatic states are defined by

ĥ�R���;R� = E��R���;R� . �32�

In the adiabatic states, Eq. �30� is easily found to be

d

dt
���� = i�����

��� +
P

M

�����

�R
+ − P

p	

m	

�

�P
+

p	

m	

�

�	

+ F	

�

�p	
����� +

P

M
d������ −

P

M
����d����

+
1

2

�����

�P
F���� +

1

2
F�������

�P
, �33�

where F��=−������
� / ��R����� and d��= ����� / ��R����� is
the nonadiabatic coupling vector. Equation �33� can be re-
written introducing the Liouville operator iLN such that

d

dt
���� = 	

���

iL���,���
N

����. �34�

The operator is

ALESSANDRO SERGI PHYSICAL REVIEW E 72, 066125 �2005�

066125-4



iL���,���
N = i���������� + ������

P

M

�

�R

+ ������− P
p	

m	

�

�P
+

p	

m	

�

�	
+ F	

�

�p	
�

+
1

2
��F���� �

�P
+

1

2
����F

�� �

�P

+
P

M
d������ −

P

M
d������. �35�

The quantum-classical Liouville operator can be put into a
form that makes its structure more apparent by adding and
subtracting the term

������
1

2
�F� + F���

�

�P
. �36�

Then using

F�� = F� + �E� − E��d�� �37�

and rearranging the terms, one obtains a classical-like Nosé-
Liouville operator

iL̂���
N =

P

M

�

�R
− P

p	

m	

�

�P
+

p	

m	

�

�	
+ F	

�

�p	

+
1

2
�F� + F���

�

�P

�38�

and a jump operator

− J���,��� = ����d��� P

M
+ �E� − E��

�

�P
�

+ ��d����
* � P

M
+ �E�� − E���

�

�P
� �39�

in terms of which the quantum-classical Liouville operator is
finally written as

iL���,���
N = i���������� + ������iL���

N − J���,���.

�40�

The jump operator J���,��� is responsible for transitions be-
tween adiabatic states while the classical-like Nosé-Liouville
operator iL���,���

N expresses Nosé dynamics on a constant
generalized energy surface with Hellman-Feynman forces
given by 1/2�F�+F���.

This shows that the matrix form of the non-Hamiltonian
commutator is suitable for the development of generalized
non-Hamiltonian dynamics for classical degrees of freedom
in quantum-classical systems.

V. STATIONARY NOSÉ DENSITY MATRIX

The average of any operator �̂ can be calculated from

��̂� = Tr�� dX�̂N�̂�t� = Tr�� dX�̂N exp�iLNt��̂ . �41�

The action of exp�iLNt� can be transferred from �̂ to �̂N by
using the cyclic invariance of the trace and integrating by

parts the terms coming from the classical brackets. One can
write

iLN =
i

�
�ĤN, . . . � −

1

2
��ĤN, . . . � − �. . . ,ĤN�� . �42�

In this equation the classical bracket terms are written

�ĤN, . . . � − �. . . ,ĤN� = 	
i,j=1

2N  �ĤN

�Xi
Bij

N� . . .

�Xj
−

� . . .

�Xi
Bij

N�ĤN

�Xj
� .

�43�

When integrating the right-hand side by parts, one
obtains a term proportional to the compressibility

�N=	i,j=1
2N ���Bij

N� / ��Xi���ĤN� / ��Xj��. As a result, the mixed
quantum-classical Liouville operator, in this case, is not Her-
mitian,

�iLN�† = − iLN − �N. �44�

The average value can then be written as

��̂� = Tr�� dX�̂ exp�− �iLN + �N�t��̂N. �45�

The mixed quantum-classical Nosé density matrix evolves
under the equation

�

�t
�̂N = −

i

�
�ĤN, �̂N� +

1

2
��ĤN, �̂N� − ��̂N,ĤN�� − �N�̂N.

�46�

The stationary density matrix �̂Ne is defined by

�iLN + �N��̂Ne = 0. �47�

To find the explicit expression, one can follow Ref. �25�,
expand the density matrix in powers of �

�̂Ne = 	
n=0

�

�n�̂Ne
�n�, �48�

and look for an explicit solution in the adiabatic basis. In
such a basis the Nosé-Liouville operator is expressed by Eq.
�40� and the Nosé Hamiltonian is given by

HN
� =

P2

2M
+

p	
2

2m	

+ gkBT	 + E��R�

= H�
P�R,P� +

p	
2

2m	

+ gkBT	 . �49�

Thus one obtains an infinite set of equations corresponding
to the various power of �

iE����Ne
�0���� = 0, �50�

iE����Ne
�n+1���� = − �iL���

N + �N��Ne
�n����

+ 	
���

J���,����Ne
�n���� �n � 1� . �51�

As shown in Ref. �25�, in order to ensure that a solution can
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be found by recursion, one must discuss the solution of
Eq. �51� when calculating the diagonal elements �Ne

�n��� in

terms of the off-diagonal ones �Ne
�n����. To this end, using

�Ne
��n����= ��Ne

��n�����*, J��,���=J��,���
* , and the fact that

J��,��=0 when a real basis is chosen, it is useful to rewrite
Eq. �51� in the form

�iL��
N + �N��Ne

�n��� = 	
����

2R�J��,����Ne
�n����� . �52�

One has �9� �−iL��
N −�N�†= iL��

N . The right-hand side of this
equation is expressed by means of the generalized bracket in
Eq. �26�: HN

� and any general function f�HN
�� are constants of

motion under the action of iL��
N . The phase space compress-

ibility �N associated with the generalized bracket in the case
of Nosé dynamics is

�N
� = − �

d

dt
 P2

2M
+

p	
2

2m	

+ E��R�� = − �N
p	

m	

= − �N
d

dt
HT

�,

�53�

where N is the number of classical momenta P in the Hamil-
tonian. Because of the presence of a nonzero phase space
compressibility, integrals over phase space must be taken
using the invariant measure �26�

dM = exp�− wN
��dRdPd	dp	, �54�

where wN
� =
dt�N

� is the indefinite integral of the compress-
ibility. To ensure that a solution to Eq. �52� exists, one must
invoke the theorem of Fredholm alternative, requiring that
the right-hand side of Eq. �52� be orthogonal to the null
space of �iL��

N �† �27�. The null space of this operator consists
of functions of the form �10� f�HN

��, where f�HN
�� can be any

function of the adiabatic Hamiltonian HN
� . Thus the condition

to be satisfied is

� dM 	
����

2R�J��,����Ne
�n�����f�HN

�� = 0. �55�

Apart from the integration on the additional Nosé phase
space variable, there is no major difference with the proof

given in Ref. �25�: 2R�J��,����Ne
�n����� and f�HN

�� are respec-
tively an odd and an even function of P; this guarantees the
validity of Eq. �55�.

Thus one can write the formal solution of Eq. �52� as

�Ne
�n��� = �iL��

N + �N�−1 	
����

2R�J��,����Ne
�n����� , �56�

and the formal solution of Eq. �51� for ���� as

�Ne
�n+1���� =

i

E���
�iL���

N + �N��Ne
�n���� −

i

E���
	
���

J���,����Ne
�n����.

�57�

Equations �56� and �57� allow one to calculate �Ne
��� to all

orders in � once �Ne
�0���� is given. This order zero term is

obtained by the solution of �iL��
N +�N��Ne

�0���=0. All higher
order terms are obtained by the action of E���, the imaginary

unit i and J������ �involving factors of d���, P and deriva-
tives with respect to P�. Hence, one can conclude that func-
tional dependence of �Ne

�0��� on the Nosé variables 	 and p	 is

preserved in higher order terms �Ne
�n����.

One can find a stationary solution to order � by consider-
ing the first two equations of the set given by Eqs. �50� and
�51�,

�ĤN, �̂Ne
�0�� = 0 �n = 0� , �58�

i�ĤN, �̂Ne
�1�� = −

1

2
�ĤN�N�̂Ne

�0� − �̂Ne
�0��NĤN� �n = 1� . �59�

For the O��0� term one can make the ansatz

�̂Ne
�0��� =

1

Z
ewN

�
�C − HN

����, �60�

where Z is

Z = 	
�
� dM�C − HN

�� , �61�

and obtain

�̂Ne
�1��� = − i

P

M
d���̂Ne

�0���1 − e−��E�−E��

E� − E�

+
�

2
�1 + e−��E�−E����

�62�

for the O��� term.
Equations �60� and �62� give the explicit form of the sta-

tionary solution of the Nosé-Liouville equation up to order
O���. One can now prove that, when calculating averages of
quantum-classical operators depending only on physical
phase space variables, G��R , P�, the canonical form of the
stationary density is obtained. It can be noted that it will
suffice to prove this result for the O��0� term since, as dis-
cussed before, the differences with the standard case are con-
tained therein.

Indeed, when calculating

�G��R,P�� � = 	
�
� dMG��R,P��C − HT

� − gkBT	� .

�63�

Considering the delta function integral over Nosé variables,
one has

� dp	d	e−N	�C − H�
T − gkBT	�

= const � exp�− ��N/g�H�
T�R,P�� , �64�

and where it has been used, the property �f�s��
= �df /ds�s=s0

−1 �s−s0� �s0 is the zero of f�s��. Thus, at variance
with what found in Ref. �16�, in order to recover the canoni-
cal distribution in the quantum-classical case, one must set
g=N as it is done in the classical case �6,7�. If the dynamics
is ergodic and if one could integrate quantum-classical equa-
tions of motion for sufficiently long time, the phase space
integral could be substituted by a time integral along the
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trajectory �28�. Ergodicity could be enforced by modern ad-
vanced sampling techniques �29� but longtime stable integra-
tion of quantum-classical dynamics is still a challenge.

VI. CONCLUSIONS AND PERSPECTIVES

In this paper a generalized non-Hamiltonian form of
quantum mechanics has been presented. This has been
achieved through the introduction of a suitable non-
Hamiltonian commutator which has been obtained by gener-
alizing the symplectic structure of the standard quantum me-
chanical commutator. Therefore, it has been demonstrated
that a single idea �i.e., generalizing the symplectic structure
of the bracket while retaining its antisymmetric form� is able
to describe in a unified way non-Hamiltonian theories both in
classical and quantum mechanics. The non-Hamiltonian
form of quantum mechanics here presented provides a gen-
eral mathematical structure which encompasses the ideas
proposed by Weinberg to introduce nonlinear effects in quan-
tum mechanics and whose physical content remains yet to be
unveiled.

For the sake of illustrating the possible use of non-
Hamiltonian commutators, it has been shown that they sub-
sume the quantum-classical bracket proposed by other au-
thors. Moreover, their matrix structure has been used to
define Nosé dynamics on the classical degrees of freedom in
quantum-classical systems. It has been also shown that the
non-Hamiltonian quantum-classical bracket can be easily
generalized to treat other thermodynamic constraints such as
those provided by barostats or Nosé-Hoover chains �NHC�.
The respective stationary density matrices are easily derived.
The implementation of thermodynamic constraints for the
classical degrees of freedom in quantum-classical systems
could be considered both as a practical and a conceptual
improvement. For example, thermostatted dynamics can be
useful for preparing systems into desired initial conditions or
for ensuring a good thermalization of the classical bath de-
grees of freedom providing a way to control the nonadiabatic
character of the dynamics. On the conceptual side one could
note that, historically, deterministic dynamics with thermo-
dynamic constraints for purely classical systems has pro-
vided well-defined algorithms to treat open systems both in
and out of equilibrium. Thus, the possibility to use the same
tool in the case of quantum-classical systems could disclose
alternative routes to the numerical study of open quantum
systems.

In conclusion, the non-Hamiltonian quantum formalism
introduced in this paper sets a unified framework with the
non-Hamiltonian classical algebra and, at the same time, dis-
closes various routes for investigating generalized quantum
and quantum-classical systems. Such studies will be per-
formed in the future.

ACKNOWLEDGMENT

The author is grateful to Raymond Kapral for suggestions
and criticisms.

APPENDIX: NHC AND NPT

The calculations of the previous sections show that the
introduction of extended system dynamics on the classical

part of the system amounts to modify the operator of Eq.
�18� by simply substituting the classical bracket operator
given in Eq. �16� with the one suited to express the desired
extended system dynamics �9,10�.

Thus, in order to couple a Nosé-Hoover chain �15� to the
classical coordinates, the classical phase space point is de-
fined as

X = �R,	1,	2,P,p	1
,p	2

� , �A1�

where for simplicity one is considering a chain of just two
thermostat coordinates 	1, 	2 and momenta p	1

, p	2
. Also,

ĤNHC =
p̂2

2m
+

P2

2M
+

p	1

2

2m	1

+
p	2

2

2m	2

+ 
̂�q̂,R� + gkBT	1

+ gkBT	2, �A2�

where m	1
and m	2

are the inertial parameters of the thermo-
stat variables. As shown in Refs. �9,10�, one can define an
antisymmetric matrix

BNHC = �
0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

− 1 0 0 0 − P 0

0 − 1 0 P 0 − p	1

0 0 − 1 0 p	1
0

� . �A3�

The matrix BNHC determines the operator �NHC which in
turn provides the the non-Hamiltonian bracket according to
Eq. �16�. The Nosé-Hoover chain classical equations of mo-
tion in phase space �9� are then given by

Ẋ = − X�NHCĤNHC. �A4�

Quantum-classical dynamics is then introduced using the
matrix superoperator

DNHC = � 0 1 +
�

2i
�NHC

− 1 +
�

2i
�NHC� 0 � . �A5�

As previously shown by means of the latter, the quantum-
classical equations of motion are then given by

d�̂

dt
=

i

�
�ĤNHC �̂� · DNHC · �ĤNHC

�̂
� . �A6�

The equations of motion can be represented using the adia-
batic basis obtaining the Liouville superoperator

iL���,���
NHC = �i���� + iL���

NHC������� − J���,���, �A7�

where
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iL���
NHC =

P

M

�

�R
+

1

2
�F� + F���

�

�P
+ 	

k=1

2  p	k

m	k

�

�	k
+ F	k

�

�p	k

�
−

p	2

m	2

p	1

�

�p	1

, �A8�

with F	2
= p	1

2 /m	1
−gkBT. The proof of the existence of a

stationary density matrix in the case of Nosé-Hoover chains
follows the same logic of the simple Nosé-Hoover case. In
the adiabatic basis the density matrix stationary up to order
bar has the same form as given in Eqs. �60� and �62�. One
has just to replace Eq. �60� for the order zero term with

�NHCe
�0��� =

1

Z
exp�− �� P2

2M
+ E��R�

+ 	
k=1

2  p	k

2

2m	k

+ gkBT	k��� �A9�

with obvious definition of Z.
For the case of constant pressure and temperature dynam-

ics, the equations of motion treated in Ref. �30� are here
considered. This time, the extended phase space point is

X = �R,	,V,P,p	,pV� , �A10�

and the Hamiltonian quantum-classical operator is

ĤNPT =
p̂2

2m
+

P2

2M
+

p	
2

2m	1

+
pV

2

2mV
+ 
̂�q̂,R� + gkBT	 + PextV .

�A11�

The equations of motion for the classical coordinates are �9�

Ṙ =
P

mi
+ R

pV

3VmV
, �A12�

ṗ	 =
p	

m	

, �A13�

V̇ =
pV

mV
, �A14�

Ṗ = −
�


�R
− P

pV

3VmV
− P

p	

m	

, �A15�

ṗ	 = 	
i=1

N
P2

mi
+

pV
2

mV
− gkBT , �A16�

ṗV = FV − pV
p	

m	

, �A17�

with

FV =
1

3V�	
i=1

N
P2

M
−

�


�R
· R� − Pext. �A18�

The antisymmetric matrix to define the operator �NPT in Eq.
�16� is then

BNPT = �
0 0 0 1 0

R

3V

0 0 0 0 1 0

0 0 0 0 0 1

− 1 0 0 0 − P −
P

3V

0 − 1 0 P 0 pV

−
R

3V
0 − 1

P

3V
− pV 0

� .

�A19�

The matrix BNPT is the same as that given in Ref. �9� but this
time the order of coordinates and momenta in the classical
extended phase space point definition of Eq. �A10� ensures
that �NPT in Eq. �16� makes the equations of motion

Ẋ = − X�NPTĤNPT �A20�

exactly equivalent to Eqs. �A12�–�A17�. Then one can define
the matrix operator DNPT and write down the quantum-
classical equations of motion. In the adiabatic basis, the
equations are written by means of the Liouville operator

iL���,���
NPT = �i���� + iL���

NPT������� − J���,���, �A21�

with

iL���
NPT = iL���

NH +
PV

3VmV
R

�

�R
−

PV

3VmV
P

�

�P

+
PV

mV

�

�V
+ FV −

p	

m	
� �

�PV
. �A22�

The stationary density matrix is derived as usual and, in the
adiabatic basis, is expressed again in the form given by Eqs.
�60� and �62� with the O��0� term given by

�NPTe
�0��� =

1

Z
exp− �� P2

2M
+ E��R� +

p	
2

2m	

+ gkBT	 +
PV

2

2mV
+ PextV�� . �A23�
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